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1 Useful Linear Algebra

Let v = (v1, v2, . . . , vn) be a non-zero n-dimensional row vector and P an n× n matrix.

• We say v is an eigenvector of P with corresponding eigenvalue λ iff vP = λv.

• The L1-norm of v (denoted ‖v‖1) is
∑n
i=1 vi.

• The L2-norm of v (denoted ‖v‖2) is
√∑n

i=1 v
2
i .

• The inner product of two vectors v and w (denoted v ·w) is
∑n
i=1 viwi.

• We say vectors v(1),v(2), . . .v(m) are orthonormal iff v(i) · v(j) =

{
1 if i = j

0 if i 6= j

Suppose P is an n × n matrix with positive entries, eigenvectors v(1),v(2), . . . ,v(n), and eigenvalues
λ1, λ2, . . . , λn. Let α ∈ R. Using the above definitions we derive the following facts:

Fact 1 αP has eigenvectors v(1),v(2), . . . ,v(n) and eigenvalues αλ1, αλ2, . . . , αλn

Proof v(i)(αP ) = α(v(i)P ) = αλiv
(i).

Fact 2 P + I has eigenvectors v(1),v(2), . . . ,v(n) and eigenvalues λ1 + 1, λ2 + 1, . . . , λn + 1

Proof v(i)(P + I) = v(i)P + v(i)I = λiv
(i) + v(i) = (λi + 1)v(i).

Fact 3 P k has eigenvectors v(1),v(2), . . . ,v(n) and eigenvalues λk1 , λ
k
2 , . . . , λ

k
n

Proof v(i)P k = (v(i)P )P k−1 = λiv
(i)P k−1 = λ2

iv
(i)P k−2 = . . . = λki v

(i).

Fact 4 If P is stochastic, then |λi| ≤ 1 for all i.

Proof For all i, let I = {j | v(i)
j > 0}. Notice that we can force I to be non-empty. If v(i) had

all nonpositive entries, we could let v(i) ← −v(i). Instead of trying to find a bound directly on λi, we

attempt to find a bound on λi
∑
j∈I v

(i)
j .

λi
∑
j∈I

v
(i)
j =

∑
j∈I

n∑
k=1

v
(i)
k Pkj (select only the columns that produce positive value)

≤
∑
j,k∈I

v
(i)
k Pkj (since P has only positive entries)

=
∑
k∈I

v
(i)
k

∑
j∈I

Pkj

≤
∑
k∈I

v
(i)
k (since P is stochastic)

This implies that λi ≤ 1. Notice, however, that in forcing I to be non-empty we could have negated
the value of the corresponding eigenvalue. Thus, what we should really conclude is that |λi| ≤ 1.
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Theorem 5 Suppose P is a symmetric n× n transition matrix. P has eigenvectors v(1),v(2), . . . ,v(n)

and corresponding eigenvalues λ1, λ2, . . . , λn such that the eigenvectors are an orthonormal basis of Rn,
1 = λ1 ≥ |λ2| ≥ |λ3| ≥ . . . ≥ |λn|, and v(1) = 1√

n
(1, 1, . . . , 1).

The power of this theorem will be evident later when we use λ2 to bound the size of all other
eigenvalues (besides λ1).

2 Mixing Times of Markov Chains

For ε > 0, the mixing time T (ε) of a Markov chain with transition matrix P and stationary distribution
Π is the minimum t such that ‖Π − Π0P t‖2 < ε for all initial distributions Π0. We say that a Markov
chain is rapidly mixing if T (ε) = poly(log n, log 1

ε ) where n is the number of states.

Theorem 6 Suppose P is the transition matrix of an undirected, nonbipartite, d-regular, connected
Markov chain with starting distribution Π0. The stationary distribution of the Markov chain is unique
and equal to 1

n (1, 1, . . . , 1). Furthermore, ‖Π0P t −Π‖2 ≤ |λ2|t where λ2 is the eigenvalue corresponding
to the eigenvectors obtained from Theorem 5.

Before we prove this theorem, it might help to take a moment to decipher what it tells us. First, we
know that any ergodic Markov chain has a unique stationary distribution. However, the above Markov
chain does not necessarily need to be ergodic, but it still has a unique (known) stationary distribution.
For instance, the cycle of length k for any k falls into this category. As we will see later, this theorem
provides an important method of determining how quickly a Markov chain converges to its stationary
distribution. For example, when λ2 is a constant less than 1, we have that the Markov chain is rapidly
mixing (actually, t only depends on ε).
Proof Since P is undirected and d-regular, P is symmetric. Thus, P is real and symmetric, justifying
our use of Theorem 5 to produce eigenvectors v(1),v(2), . . . ,v(n) with corresponding eigenvectors 1 =
λ1 > |λ2| ≥ |λ3| ≥ . . . ≥ |λn|. Since these eigenvector form an orthonormal basis of Rn, we can express
Π0 as a linear combination of the v(i)’s. So,

Π0 =

n∑
i=1

αiv
(i)

=⇒ Π0P t =

n∑
i=1

αiv
(i)P t

=
n∑
i=1

αiλ
t
iv

(i) (using Fact 3)

= α1λ
t
1v

(1) +

n∑
i=2

αiλ
t
iv

(i)

= α1v
(1) +

n∑
i=2

αiλ
t
iv

(i)
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Using the orthonormality of the basis, we can find the value of α1. Recall from Theorem 5 that
v(1) = 1√

n
(1, 1, . . . , 1).

Π0 · v(1) = α1v
(1) · v(1) +

n∑
i=2

αiλ
t
iv

(i) · v(1)

1√
n

Π0 · (1, 1, . . . , 1) = α1 (since the v(1),v(2), . . . ,v(n) are orthonormal)

1√
n

= α1 (since Π0 is a probability distribution)

So, α1v
(1) = 1

n (1, 1, . . . , 1). We claim now that this is fact the stationary distribution of the Markov
chain. That is,

‖Π0P t − 1

n
(1, 1, . . . , 1)‖ = ‖

n∑
i=2

αiλ
t
iv

(i)‖ (using above calculations)

=

√√√√ n∑
i=2

αiλtiv
(i) ·

n∑
i=2

αiλtiv
(i)

=

√√√√ n∑
i=2

α2
iλ

2t
i (by orthonormality of basis vectors)

≤ |λ2|t
√√√√ n∑

i=2

α2
i (since |λ2| > |λi|)

≤ |λ2|t‖Π0‖2

since

√√√√ n∑
i=1

α2
i = ‖Π0‖2


≤ |λ2|t‖Π0‖1 (since L1-norm is at least L2-norm when entries at most 1)

= |λ2|t

We now state (without proof) that the nonbipartite property of P ensures that |λ2| < 1. Thus, |λ2|t
goes to 0 as t goes to infinity. Thus, 1

n (1, 1, . . . , 1) must be the stationary distribution for Π0! Since
there is no dependence on Π0, we conclude that this is the unique stationary distribution for any starting
distribution.

3 Using Markov Chains to Reduce Randomness

Recall our previous methods for reducing error for problems in RP. By repeating the algorithm k times,
we used O(k · r) bits of randomness. Using ideas from pairwise independence, we were able to reduce to
the randomness further to O(k + r). We now give an approach using random walks on Markov chains
that uses r +O(k) bits of randomness.

We concern ourselves with problems that have one-sided error. That is, for algorithm A deciding
language L we have

1. ∀x ∈ L, Pr[A(x) = 1] ≥ 99
100
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2. ∀x 6∈ L, Pr[A(x) = 0] = 1

The idea is to associate all (random) strings in {0, 1}n with nodes of a graph G. If x 6∈ L, we do not
care which path we take on the graph because A will never accept. However, if x ∈ L, we wish to design
G in such a way that a random walk starting from a random node is likely to arrive at any random
string for which the algorithm accepts.

Lemma 7 There exists a graph G on 2r nodes with the following properties

• constant degree d-regular, connected, nonbipartite

• transition matrix for random walk on G has λ2 ≤ 1
10 .

• uniform stationary distribution (since d-regular)

Algorithm 1 RP error reduction algorithm

w ← {0, 1}r
repeat

w ← neighbor of w in G
Run A(x) using randomness w
if A(x) outputs “x ∈ L” then

return “x ∈ L” and halt
end if

until A does not accept k times
return “x 6∈ L”

Use Algorithm 1 to reduce error for RP problems, and note that all assignments are done uniformly
at random. Examining the algorithm, r bits of randomness are used to choose the initial w and log d
bits of randomness are used to choose a random neighbor on each iteration. Thus, the total amount of
randomness used in the algorithm is r + k log d = r +O(k) since d is constant.

Claim 8 Probability of error of Algorithm 1 is at most 1
5k for x ∈ L. If x 6∈ L, probability of error is 0.

Proof If x 6∈ L, then A never accepts, so probability of error is 0. If x ∈ L, then at least 99
1002r choices

of random bits have accepting paths in A. Let B be the set capturing those random strings which are
“bad”. That is, B = {w | A(x) with randomness w rejects}. By the above observation, |B| ≤ 2r

100 .
To use the linear algebraic properties of G, we need a linear algebraic way to describe the random

walks that stay within B. We define N as a 2r × 2r diagonal matrix (i.e. the only non-zero elements are
on the diagonal). The ith diagonal of N is 1 if i ∈ B and is 0 otherwise.

Let Π be any probability distribution. We arrive at the following ideas.

‖ΠN‖1 = Pr
w∼Π

[A(x) rejects]

‖ΠPN‖1 = Pr
w∼Π

[A(x) rejects after taking a random step]

...

‖Π(PN)i‖1 = Pr
w∼Π

[A(x) rejects on each of i random steps]

Notice that the expression ‖Π(PN)i‖1 ignores the possibility that the initial w drawn from Π is a “bad”
random string. However, since this only hurts our estimates, we are okay to ignore it.

Lemma 9 For all Π (not necessarily probability distributions), ‖ΠPN‖2 ≤ 1
5‖Π‖2.
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Before we prove the lemma, let us see how it implies the theorem. Let Π be the uniform distribution on

{0, 1}r. The L2-norm of the uniform distribution is
√∑2r

i=1( 1
2r )2 =

√
1
2r .

Pr[Algorithm 1 incorrect] ≤ ‖Π(PN)k‖1
≤
√

2r‖Π(PK)k‖2 (by Cauchy-Schwarz)

≤
√

2r‖Π‖2
1

5k
(applying lemma k times)

=
1

5k
(using above calculation of norm of uniform distribution)

So Algorithm 1 only uses r+O(k) bits of randomness and still guarantees that the error probability
decreases exponentially in k.

Proof (of Lemma 9) This is where we use the nice linear algebraic properties of G. Since G is real
and symmetric we can apply Theorem 5 to the transition matrix P of G. Let v1,v2, . . . ,v2r be the
eigenvectors of P . Since v1 = 1

2r (1, 1, . . . , 1), ‖v1‖2 = 1. Use the fact that the eigenvectors form a basis

to write Π =
∑2r

i=1 αivi. So,

‖ΠPN‖2 = ‖
2r∑
i=1

αiviPN‖2

= ‖
2r∑
i=1

αiλiviN‖2

≤ ‖α1λ1v1N‖2 + ‖
2r∑
i=2

αiλiviN‖2 (by triangle inequality)

We will proceed by bounding each term separately. Intuitively, the first term should be small because
we are unlikely to draw a “bad” string drawing uniformly from {0, 1}r. The second term should be small
because the eigenvalues are small.

‖α1λ1v1N‖2 = ‖α1v1N‖2 (since λi = 1)

= |α1|

√√√√∑
i∈B

(
1√
2r

)2

(since v1 =
1√
2r

(1, 1, . . . , 1))

= |α1|
√
|B|
2r

≤ |α1|
10

(
since

|B|
2r
≤ 1

100

)

≤ ‖Π‖2
10

since ‖Π‖2 =

√√√√ 2r∑
i=1

α2
i
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‖
2r∑
i=2

αiλiviN‖2 ≤ ‖
2r∑
i=2

αiλivi‖2

since ‖vN‖2 =

√∑
i∈B

v2
i ≤

√√√√ 2r∑
i=1

v2
i = ‖v‖2


=

√√√√ 2r∑
i=2

(αiλi)2

≤

√√√√ 2r∑
i=2

α2
i

(
1

10

)2

(since λi ≤
1

10
)

≤ ‖Π‖2
10

So, ‖ΠPN‖2 ≤ ‖Π‖25 .
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