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Lecture 8
Lecturer: Romnitt Rubinfeld Scribe: Daniel Grier
1 Useful Linear Algebra
Let v = (v1,va,...,v,) be a non-zero n-dimensional row vector and P an n X n matrix.

e We say v is an eigenvector of P with corresponding eigenvalue \ iff vP = Av.
e The £;-norm of v (denoted ||v|1) is D1, v;.
e The Lo-norm of v (denoted ||v2) is /Y ., vZ.
e The inner product of two vectors v and w (denoted v - w) is D1 | v;w;.
(1) y(@) | ym) v .y = )L =
e We say vectors vV, vi¢) .. v\"™ are orthonormal iff v\*) - vl = Y
0 ifi#j

Suppose P is an n X n matrix with positive entries, eigenvectors v(,v(? .. v(™ and eigenvalues
A1, A2, ..., Ay, Let a € R. Using the above definitions we derive the following facts:

Fact 1 oP has eigenvectors vV, v . v and eigenvalues a1, s, ..., a,

Proof v (aP)=a(v®P)=a)\v®. &

Fact 2 P + I has eigenvectors v v . v(") and eigenvalues \y + 1, o +1,..., A, +1
Proof v (P+1)=vOP4+vOT1 =) \v® 4 v =\, +1)vD. &

k

n

Proof vPF= (v P )Pt = \,v@OPph-l = \2y(Opk-2 = = \kv() B

Fact 3 P* has eigenvectors viD) v .. v and eigenvalues AEXNE A

Fact 4 If P is stochastic, then |\;| <1 for all i.

Proof For all ¢, let I = {j | vj(»i) > 0}. Notice that we can force I to be non-empty. If v(¥) had
all nonpositive entries, we could let v(’:) — —v(®_ Instead of trying to find a bound directly on \;, we
attempt to find a bound on \; Zjel V;z).
Ai Z v](.i) = Z Z v,(:)ij (select only the columns that produce positive value)
jel jel k=1
<Zv(i)P, (si P has onl i
< b P since as only positive entrles)
jkel
WD
kel jel
< Z v,(:) (since P is stochastic)
kel

This implies that A; < 1. Notice, however, that in forcing I to be non-empty we could have negated
the value of the corresponding eigenvalue. Thus, what we should really conclude is that |A;| < 1. B



Theorem 5 Suppose P is a symmetric n X n transition matriz. P has eigenvectors vl v@ oy

and corresponding eigenvalues A1, Ao, ..., A, such that the eigenvectors are an orthonormal basis of R™,
L=X > X > X3 > ... > | M), and v = (11,1

The power of this theorem will be evident later when we use Ay to bound the size of all other
eigenvalues (besides \1).

2 Mixing Times of Markov Chains

For € > 0, the mizing time T'(€) of a Markov chain with transition matrix P and stationary distribution
I1 is the minimum ¢ such that [|II — I[I°P!||y < € for all initial distributions I1°. We say that a Markov
chain is rapidly mizing if T (€) = poly(logn,log 1) where n is the number of states.

Theorem 6 Suppose P is the transition matriz of an undirected, nonbipartite, d-regular, connected
Markov chain with starting distribution II°. The stationary distribution of the Markov chain is unique
and equal to 2(1,1,...,1). Furthermore, |TI°P* —TII|ls < [Xo|" where Xz is the eigenvalue corresponding
to the eigenvectors obtained from Theorem 5.

Before we prove this theorem, it might help to take a moment to decipher what it tells us. First, we

know that any ergodic Markov chain has a unique stationary distribution. However, the above Markov
chain does not necessarily need to be ergodic, but it still has a unique (known) stationary distribution.
For instance, the cycle of length k for any k falls into this category. As we will see later, this theorem
provides an important method of determining how quickly a Markov chain converges to its stationary
distribution. For example, when A, is a constant less than 1, we have that the Markov chain is rapidly
mixing (actually, ¢t only depends on €).
Proof Since P is undirected and d-regular, P is symmetric. Thus, P is real and symmetric, justifying
our use of Theorem 5 to produce eigenvectors vV, v(®) . v(" with corresponding eigenvectors 1 =
A1 > |A2] > [As] > ... > |An|- Since these eigenvector form an orthonormal basis of R™, we can express
I° as a linear combination of the v(¥’s. So,

HO = Z OéiV(i)
i=1
n
= P =) a;v P!
i=1
= Z aXiv(® (using Fact 3)
i=1
= al)\fiv(l) + Z ai)\ﬁv(i)
i=2

n
=av 4 Z a\v(®

1=2



Using the orthonormality of the basis, we can find the value of o;. Recall from Theorem 5 that

v :ﬁ(1,1,...,1).

v = ayv® v £ 3 gt -y
1=2

1
%HO -(1,1,...,)=m (since the v v@ v are orthonormal)
L
Vn

= (since TI” is a probability distribution)

So, agv) = %(17 1,...,1). We claim now that this is fact the stationary distribution of the Markov
chain. That is,

1 ~ .
TPt — —(1,1,...,1)| = | E a v (using above calculations)
n
i=2

= i:ozi/\ﬁv(i) . iai)\ﬁv(i)
\ i=2 i=2

n
= Z aZ\?t (by orthonormality of basis vectors)
=2

< Ao/t (since |Az] > |Ai|)
n
<Pall M0 [ since | S a2 = 1)
i=1
< AT (since L£q-norm is at least Lo-norm when entries at most 1)

= [ Ao/

We now state (without proof) that the nonbipartite property of P ensures that |[As| < 1. Thus, |Aa|*
goes to 0 as t goes to infinity. Thus, %(1, 1,...,1) must be the stationary distribution for 11! Since
there is no dependence on I1°, we conclude that this is the unique stationary distribution for any starting
distribution. H

3 Using Markov Chains to Reduce Randomness

Recall our previous methods for reducing error for problems in RP. By repeating the algorithm k times,
we used O(k - r) bits of randomness. Using ideas from pairwise independence, we were able to reduce to
the randomness further to O(k + r). We now give an approach using random walks on Markov chains
that uses r + O(k) bits of randomness.

We concern ourselves with problems that have one-sided error. That is, for algorithm A deciding
language L we have

1. VYo € L, Pr[A(z) = 1] > 3%



2. Vx ¢ L, Pr[A(z) =0] =1

The idea is to associate all (random) strings in {0, 1}™ with nodes of a graph G. If = ¢ L, we do not
care which path we take on the graph because A will never accept. However, if x € L, we wish to design
G in such a way that a random walk starting from a random node is likely to arrive at any random
string for which the algorithm accepts.

Lemma 7 There exists a graph G on 2" nodes with the following properties
e constant degree d-reqular, connected, nonbipartite
e transition matriz for random walk on G has Ao < 1—10,

e uniform stationary distribution (since d-regular)

Algorithm 1 RP error reduction algorithm
w <« {0,1}"
repeat
w 4 neighbor of w in G
Run A(z) using randomness w
if A(x) outputs “z € L” then
return “x € L” and halt
end if
until A does not accept k times
return “z ¢ L”

Use Algorithm 1 to reduce error for RP problems, and note that all assignments are done uniformly
at random. Examining the algorithm, r bits of randomness are used to choose the initial w and logd
bits of randomness are used to choose a random neighbor on each iteration. Thus, the total amount of
randomness used in the algorithm is r + klogd = r + O(k) since d is constant.

Claim 8 Probability of error of Algorithm 1 is at most 5% forx e L. If x & L, probability of error is 0.

Proof Ifz & L, then A never accepts, so probability of error is 0. If z € L, then at least %QT choices
of random bits have accepting paths in A. Let B be the set capturing those random strings which are
“bad”. That is, B = {w | A(x) with randomness w rejects}. By the above observation, |B| < 1%0'

To use the linear algebraic properties of G, we need a linear algebraic way to describe the random
walks that stay within B. We define N as a 2" x 2" diagonal matrix (i.e. the only non-zero elements are
on the diagonal). The ith diagonal of N is 1 if ¢ € B and is 0 otherwise.

Let IT be any probability distribution. We arrive at the following ideas.

ITIN||; = Pr [A(x) rejects]
wn~IT

ITIPN|; = PrH[A(:v) rejects after taking a random step]
W~

ITH(PN)||; = PrH[.A(a:) rejects on each of ¢ random steps]

Notice that the expression ||[II(PN)?||; ignores the possibility that the initial w drawn from II is a “bad”
random string. However, since this only hurts our estimates, we are okay to ignore it.

Lemma 9 For all I (not necessarily probability distributions), |IIPN ||z < [|II]..



Before we prove the lemma, let us see how it implies the theorem. Let II be the uniform distribution on

{0,1}". The Ly-norm of the uniform distribution is Zle(%) =/=.

Pr[Algorithm 1 incorrect] < ||[II(PN)¥||;
< V2 |[II(PK)*||5 (by Cauchy-Schwarz)

1
< \/27||H||25—k (applying lemma k times)
1

= (using above calculation of norm of uniform distribution)

So Algorithm 1 only uses r + O(k) bits of randomness and still guarantees that the error probability
decreases exponentially in k. H

Proof (of Lemma 9) This is where we use the nice linear algebraic properties of G. Since G is real
and symmetric we can apply Theorem 5 to the transition matrix P of G. Let vi,vs,...,var be the
eigenvectors of P. Since vi = 5-(1,1,...,1),|[vi|l2 = 1. Use the fact that the eigenvectors form a basis

. 27
to write IT = > "7, a;v;. So,

.,
IIPN ||z = 3 aviPN]s
i=1

o
= 1> airviN |2
i=1

or
< lag A viN||2 + HZ a;\iviN||2 (by triangle inequality)
i=2

We will proceed by bounding each term separately. Intuitively, the first term should be small because
we are unlikely to draw a “bad” string drawing uniformly from {0, 1}". The second term should be small
because the eigenvalues are small.

lar A1 viN||2 = |Ja1viN||2 (since \; = 1)

Bl _ 1
since < —
2" 100

since ||II||2 =

i=1



2" 2"
1> aidiviN]2 < ) cidivilla since [Ny = [> v? <
=2 1=2 1€B

or

=\ D_(@iN)?

=2

2r 2

1 1
E a? [ — (since \; < —)
= *\ 10 10

_ s
— 10
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So, [TIPN;, < 11l m



