Lecture 8

1 Useful Linear Algebra

Let $\mathbf{v} = (v_1, v_2, \dots, v_n)$ be a non-zero *n*-dimensional row vector and *P* an $n \times n$ matrix.

- We say **v** is an *eigenvector* of P with corresponding *eigenvalue* λ iff **v**P = λ **v**.
- The \mathcal{L}_1 -norm of \mathbf{v} (denoted $\|\mathbf{v}\|_1$) is $\sum_{i=1}^n v_i$.
- The \mathcal{L}_2 -norm of \mathbf{v} (denoted $\|\mathbf{v}\|_2$) is $\sqrt{\sum_{i=1}^n v_i^2}$.
- The inner product of two vectors **v** and **w** (denoted $\mathbf{v} \cdot \mathbf{w}$) is $\sum_{i=1}^{n} v_i w_i$.
- We say vectors $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots \mathbf{v}^{(m)}$ are orthonormal iff $\mathbf{v}^{(i)} \cdot \mathbf{v}^{(j)} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$

Suppose P is an $n \times n$ matrix with positive entries, eigenvectors $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots, \mathbf{v}^{(n)}$, and eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$. Let $\alpha \in \mathbb{R}$. Using the above definitions we derive the following facts:

Fact 1 αP has eigenvectors $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots, \mathbf{v}^{(n)}$ and eigenvalues $\alpha \lambda_1, \alpha \lambda_2, \dots, \alpha \lambda_n$ Proof $\mathbf{v}^{(i)}(\alpha P) = \alpha(\mathbf{v}^{(i)}P) = \alpha \lambda_i \mathbf{v}^{(i)}$.

Fact 2 P + I has eigenvectors $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots, \mathbf{v}^{(n)}$ and eigenvalues $\lambda_1 + 1, \lambda_2 + 1, \dots, \lambda_n + 1$ Proof $\mathbf{v}^{(i)}(P+I) = \mathbf{v}^{(i)}P + \mathbf{v}^{(i)}I = \lambda_i \mathbf{v}^{(i)} + \mathbf{v}^{(i)} = (\lambda_i + 1)\mathbf{v}^{(i)}$.

Fact 3 P^k has eigenvectors $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots, \mathbf{v}^{(n)}$ and eigenvalues $\lambda_1^k, \lambda_2^k, \dots, \lambda_n^k$ **Proof** $\mathbf{v}^{(i)}P^k = (\mathbf{v}^{(i)}P)P^{k-1} = \lambda_i \mathbf{v}^{(i)}P^{k-1} = \lambda_i^2 \mathbf{v}^{(i)}P^{k-2} = \dots = \lambda_i^k \mathbf{v}^{(i)}$.

Fact 4 If P is stochastic, then $|\lambda_i| \leq 1$ for all i.

Proof For all *i*, let $I = \{j \mid v_j^{(i)} > 0\}$. Notice that we can force *I* to be non-empty. If $\mathbf{v}^{(i)}$ had all nonpositive entries, we could let $\mathbf{v}^{(i)} \leftarrow -\mathbf{v}^{(i)}$. Instead of trying to find a bound directly on λ_i , we attempt to find a bound on $\lambda_i \sum_{j \in I} \mathbf{v}_j^{(i)}$.

$$\begin{split} \lambda_i \sum_{j \in I} v_j^{(i)} &= \sum_{j \in I} \sum_{k=1}^n v_k^{(i)} P_{kj} \qquad \text{(select only the columns that produce positive value)} \\ &\leq \sum_{j,k \in I} v_k^{(i)} P_{kj} \qquad \text{(since } P \text{ has only positive entries)} \\ &= \sum_{k \in I} v_k^{(i)} \sum_{j \in I} P_{kj} \\ &\leq \sum_{k \in I} v_k^{(i)} \qquad \text{(since } P \text{ is stochastic)} \end{split}$$

This implies that $\lambda_i \leq 1$. Notice, however, that in forcing I to be non-empty we could have negated the value of the corresponding eigenvalue. Thus, what we should really conclude is that $|\lambda_i| \leq 1$.

Theorem 5 Suppose *P* is a symmetric $n \times n$ transition matrix. *P* has eigenvectors $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \ldots, \mathbf{v}^{(n)}$ and corresponding eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that the eigenvectors are an orthonormal basis of \mathbb{R}^n , $1 = \lambda_1 \ge |\lambda_2| \ge |\lambda_3| \ge \ldots \ge |\lambda_n|$, and $\mathbf{v}^{(1)} = \frac{1}{\sqrt{n}}(1, 1, \ldots, 1)$.

The power of this theorem will be evident later when we use λ_2 to bound the size of all other eigenvalues (besides λ_1).

2 Mixing Times of Markov Chains

For $\epsilon > 0$, the mixing time $T(\epsilon)$ of a Markov chain with transition matrix P and stationary distribution Π is the minimum t such that $\|\Pi - \Pi^0 P^t\|_2 < \epsilon$ for all initial distributions Π^0 . We say that a Markov chain is rapidly mixing if $T(\epsilon) = poly(\log n, \log \frac{1}{\epsilon})$ where n is the number of states.

Theorem 6 Suppose P is the transition matrix of an undirected, nonbipartite, d-regular, connected Markov chain with starting distribution Π^0 . The stationary distribution of the Markov chain is unique and equal to $\frac{1}{n}(1,1,\ldots,1)$. Furthermore, $\|\Pi^0 P^t - \Pi\|_2 \leq |\lambda_2|^t$ where λ_2 is the eigenvalue corresponding to the eigenvectors obtained from Theorem 5.

Before we prove this theorem, it might help to take a moment to decipher what it tells us. First, we know that any ergodic Markov chain has a unique stationary distribution. However, the above Markov chain does not necessarily need to be ergodic, but it still has a unique (known) stationary distribution. For instance, the cycle of length k for any k falls into this category. As we will see later, this theorem provides an important method of determining how quickly a Markov chain converges to its stationary distribution. For example, when λ_2 is a constant less than 1, we have that the Markov chain is rapidly mixing (actually, t only depends on ϵ).

Proof Since *P* is undirected and *d*-regular, *P* is symmetric. Thus, *P* is real and symmetric, justifying our use of Theorem 5 to produce eigenvectors $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \ldots, \mathbf{v}^{(n)}$ with corresponding eigenvectors $1 = \lambda_1 > |\lambda_2| \ge |\lambda_3| \ge \ldots \ge |\lambda_n|$. Since these eigenvector form an orthonormal basis of \mathbb{R}^n , we can express Π^0 as a linear combination of the $v^{(i)}$'s. So,

$$\Pi^{0} = \sum_{i=1}^{n} \alpha_{i} \mathbf{v}^{(i)}$$

$$\implies \Pi^{0} P^{t} = \sum_{i=1}^{n} \alpha_{i} \mathbf{v}^{(i)} P^{t}$$

$$= \sum_{i=1}^{n} \alpha_{i} \lambda_{i}^{t} \mathbf{v}^{(i)} \qquad \text{(using Fact 3)}$$

$$= \alpha_{1} \lambda_{1}^{t} \mathbf{v}^{(1)} + \sum_{i=2}^{n} \alpha_{i} \lambda_{i}^{t} \mathbf{v}^{(i)}$$

$$= \alpha_{1} \mathbf{v}^{(1)} + \sum_{i=2}^{n} \alpha_{i} \lambda_{i}^{t} \mathbf{v}^{(i)}$$

Using the orthonormality of the basis, we can find the value of α_1 . Recall from Theorem 5 that $\mathbf{v}^{(1)} = \frac{1}{\sqrt{n}}(1, 1, \dots, 1)$.

$$\Pi^{0} \cdot \mathbf{v}^{(1)} = \alpha_{1} \mathbf{v}^{(1)} \cdot \mathbf{v}^{(1)} + \sum_{i=2}^{n} \alpha_{i} \lambda_{i}^{t} \mathbf{v}^{(i)} \cdot \mathbf{v}^{(1)}$$
$$\frac{1}{\sqrt{n}} \Pi^{0} \cdot (1, 1, \dots, 1) = \alpha_{1} \qquad \text{(since the } \mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots, \mathbf{v}^{(n)} \text{ are orthonormal)}$$
$$\frac{1}{\sqrt{n}} = \alpha_{1} \qquad \text{(since } \Pi^{0} \text{ is a probability distribution)}$$

So, $\alpha_1 \mathbf{v}^{(1)} = \frac{1}{n}(1, 1, \dots, 1)$. We claim now that this is fact the stationary distribution of the Markov chain. That is,

$$\begin{split} \|\Pi^{0}P^{t} - \frac{1}{n}(1, 1, \dots, 1)\| &= \|\sum_{i=2}^{n} \alpha_{i} \lambda_{i}^{t} \mathbf{v}^{(i)}\| \qquad \text{(using above calculations)} \\ &= \sqrt{\sum_{i=2}^{n} \alpha_{i} \lambda_{i}^{t} \mathbf{v}^{(i)} \cdot \sum_{i=2}^{n} \alpha_{i} \lambda_{i}^{t} \mathbf{v}^{(i)}} \\ &= \sqrt{\sum_{i=2}^{n} \alpha_{i}^{2} \lambda_{i}^{2t}} \qquad \text{(by orthonormality of basis vectors)} \\ &\leq |\lambda_{2}|^{t} \sqrt{\sum_{i=2}^{n} \alpha_{i}^{2}} \qquad (\text{since } |\lambda_{2}| > |\lambda_{i}|) \\ &\leq |\lambda_{2}|^{t} \|\Pi^{0}\|_{2} \qquad \left(\text{since } \sqrt{\sum_{i=1}^{n} \alpha_{i}^{2}} = \|\Pi^{0}\|_{2} \right) \\ &\leq |\lambda_{2}|^{t} \|\Pi^{0}\|_{1} \qquad (\text{since } \mathcal{L}_{1}\text{-norm is at least } \mathcal{L}_{2}\text{-norm when entries at most 1)} \\ &= |\lambda_{2}|^{t} \end{split}$$

We now state (without proof) that the nonbipartite property of P ensures that $|\lambda_2| < 1$. Thus, $|\lambda_2|^t$ goes to 0 as t goes to infinity. Thus, $\frac{1}{n}(1, 1, ..., 1)$ must be the stationary distribution for Π^0 ! Since there is no dependence on Π^0 , we conclude that this is the unique stationary distribution for any starting distribution.

3 Using Markov Chains to Reduce Randomness

Recall our previous methods for reducing error for problems in RP. By repeating the algorithm k times, we used $O(k \cdot r)$ bits of randomness. Using ideas from pairwise independence, we were able to reduce to the randomness further to O(k + r). We now give an approach using random walks on Markov chains that uses r + O(k) bits of randomness.

We concern ourselves with problems that have one-sided error. That is, for algorithm \mathcal{A} deciding language L we have

1. $\forall x \in L, \Pr[\mathcal{A}(x) = 1] \ge \frac{99}{100}$

2. $\forall x \notin L$, $\Pr[\mathcal{A}(x) = 0] = 1$

The idea is to associate all (random) strings in $\{0,1\}^n$ with nodes of a graph G. If $x \notin L$, we do not care which path we take on the graph because \mathcal{A} will never accept. However, if $x \in L$, we wish to design G in such a way that a random walk starting from a random node is likely to arrive at *any* random string for which the algorithm accepts.

Lemma 7 There exists a graph G on 2^r nodes with the following properties

- constant degree d-regular, connected, nonbipartite
- transition matrix for random walk on G has $\lambda_2 \leq \frac{1}{10}$.
- uniform stationary distribution (since d-regular)

Al	lgori	\mathbf{thm}	1	RP	error	rec	luction	al	gorit	hm
----	-------	----------------	---	----	-------	-----	---------	----	-------	----

```
w \leftarrow \{0,1\}^r

repeat

w \leftarrow \text{neighbor of } w \text{ in } G

Run \mathcal{A}(x) using randomness w

if \mathcal{A}(x) outputs "x \in L" then

return "x \in L" and halt

end if

until \mathcal{A} does not accept k times

return "x \notin L"
```

Use Algorithm 1 to reduce error for RP problems, and note that all assignments are done uniformly at random. Examining the algorithm, r bits of randomness are used to choose the initial w and $\log d$ bits of randomness are used to choose a random neighbor on each iteration. Thus, the total amount of randomness used in the algorithm is $r + k \log d = r + O(k)$ since d is constant.

Claim 8 Probability of error of Algorithm 1 is at most $\frac{1}{5^k}$ for $x \in L$. If $x \notin L$, probability of error is 0.

Proof If $x \notin L$, then \mathcal{A} never accepts, so probability of error is 0. If $x \in L$, then at least $\frac{99}{100}2^r$ choices of random bits have accepting paths in \mathcal{A} . Let B be the set capturing those random strings which are "bad". That is, $B = \{w \mid \mathcal{A}(x) \text{ with randomness } w \text{ rejects}\}$. By the above observation, $|B| \leq \frac{2^r}{100}$.

To use the linear algebraic properties of G, we need a linear algebraic way to describe the random walks that stay within B. We define N as a $2^r \times 2^r$ diagonal matrix (i.e. the only non-zero elements are on the diagonal). The *i*th diagonal of N is 1 if $i \in B$ and is 0 otherwise.

Let Π be any probability distribution. We arrive at the following ideas.

$$\|\Pi N\|_1 = \Pr_{w \sim \Pi}[\mathcal{A}(x) \text{ rejects}]$$
$$\|\Pi P N\|_1 = \Pr_{w \sim \Pi}[\mathcal{A}(x) \text{ rejects after taking a random step}]$$

: $\|\Pi(PN)^i\|_1 = \Pr_{w \sim \Pi}[\mathcal{A}(x) \text{ rejects on each of } i \text{ random steps}]$

Notice that the expression $\|\Pi(PN)^i\|_1$ ignores the possibility that the initial w drawn from Π is a "bad" random string. However, since this only hurts our estimates, we are okay to ignore it.

Lemma 9 For all Π (not necessarily probability distributions), $\|\Pi PN\|_2 \leq \frac{1}{5} \|\Pi\|_2$.

Before we prove the lemma, let us see how it implies the theorem. Let Π be the uniform distribution on $\{0,1\}^r$. The \mathcal{L}_2 -norm of the uniform distribution is $\sqrt{\sum_{i=1}^{2^r} (\frac{1}{2^r})^2} = \sqrt{\frac{1}{2^r}}$.

 $\Pr[\text{Algorithm 1 incorrect}] \le \|\Pi(PN)^k\|_1$

$$\leq \sqrt{2^{r}} \|\Pi(PK)^{k}\|_{2} \qquad \text{(by Cauchy-Schwarz)}$$

$$\leq \sqrt{2^{r}} \|\Pi\|_{2} \frac{1}{5^{k}} \qquad \text{(applying lemma } k \text{ times)}$$

$$= \frac{1}{5^{k}} \qquad \text{(using above calculation of norm of uniform distribution)}$$

So Algorithm 1 only uses r + O(k) bits of randomness and still guarantees that the error probability decreases exponentially in k.

Proof (of Lemma 9) This is where we use the nice linear algebraic properties of *G*. Since *G* is real and symmetric we can apply Theorem 5 to the transition matrix *P* of *G*. Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_{2^r}$ be the eigenvectors of *P*. Since $\mathbf{v}_1 = \frac{1}{2^r}(1, 1, \ldots, 1), \|\mathbf{v}_1\|_2 = 1$. Use the fact that the eigenvectors form a basis to write $\Pi = \sum_{i=1}^{2^r} \alpha_i \mathbf{v}_i$. So,

$$\|\Pi PN\|_{2} = \|\sum_{i=1}^{2^{r}} \alpha_{i} \mathbf{v}_{i} PN\|_{2}$$
$$= \|\sum_{i=1}^{2^{r}} \alpha_{i} \lambda_{i} \mathbf{v}_{i} N\|_{2}$$
$$\leq \|\alpha_{1} \lambda_{1} \mathbf{v}_{1} N\|_{2} + \|\sum_{i=2}^{2^{r}} \alpha_{i} \lambda_{i} \mathbf{v}_{i} N\|_{2} \qquad \text{(by triangle inequality)}$$

We will proceed by bounding each term separately. Intuitively, the first term should be small because we are unlikely to draw a "bad" string drawing uniformly from $\{0,1\}^r$. The second term should be small because the eigenvalues are small.

$$\begin{aligned} \|\alpha_1\lambda_1\mathbf{v}_1N\|_2 &= \|\alpha_1\mathbf{v}_1N\|_2 \quad (\text{since } \lambda_i = 1) \\ &= |\alpha_1| \sqrt{\sum_{i \in B} \left(\frac{1}{\sqrt{2^r}}\right)^2} \quad (\text{since } \mathbf{v}_1 = \frac{1}{\sqrt{2^r}}(1, 1, \dots, 1)) \\ &= |\alpha_1| \sqrt{\frac{|B|}{2^r}} \\ &\leq \frac{|\alpha_1|}{10} \quad \left(\text{since } \frac{|B|}{2^r} \leq \frac{1}{100}\right) \\ &\leq \frac{\|\Pi\|_2}{10} \quad \left(\text{since } \|\Pi\|_2 = \sqrt{\sum_{i=1}^{2^r} \alpha_i^2}\right) \end{aligned}$$

$$\begin{split} \|\sum_{i=2}^{2^r} \alpha_i \lambda_i \mathbf{v}_i N\|_2 &\leq \|\sum_{i=2}^{2^r} \alpha_i \lambda_i \mathbf{v}_i\|_2 \qquad \left(\text{since } \|\mathbf{v}N\|_2 = \sqrt{\sum_{i\in B} v_i^2} \leq \sqrt{\sum_{i=1}^{2^r} v_i^2} = \|\mathbf{v}\|_2\right) \\ &= \sqrt{\sum_{i=2}^{2^r} (\alpha_i \lambda_i)^2} \\ &\leq \sqrt{\sum_{i=2}^{2^r} \alpha_i^2 \left(\frac{1}{10}\right)^2} \qquad (\text{since } \lambda_i \leq \frac{1}{10}) \\ &\leq \frac{\|\Pi\|_2}{10} \end{split}$$

So, $\|\Pi PN\|_2 \le \frac{\|\Pi\|_2}{5}$.